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Exact spatially inhomogeneous cosmologies 

J Wainwright 
Department of Applied Mathematics, University of Waterloo, Waterloo, Ontario, Canada, 
N2L 3G1 

Received 2 June 1980, in final form 26 November 1980 

Abstract. The aim of this paper is to give an overview of the derivation and properties of 
exact solutions of the Einstein field equations which are spatially inhomogeneous with the 
source assumed to be an irrotational perfect fluid. It is shown that the known such spatially 
inhomogeneous solutions either admit a group of isometries with 2 D  orbits or are 
algebraically special. The solutions are related to a previously given classification scheme 
which is based on the intrinsic and extrinsic geometry of the hypersurfaces orthogonal to the 
fluid flow. 

1. Introduction 

A theoretical discussion of many aspects of the early universe (for example galaxy 
formation, the possibility of primordial black hole formation, the nature of the initial 
singularity) necessitates the use of spatially inhomogeneous cosmological models (see 
for example Carr and Hawking 1974, Liang 1976, Barrow 1978, Centrella and Matzner 
1979, Barrow 1980). The task is made more difficult by a lack of suitable exact 
solutions of the Einstein field equations (see for example, the remark on p 510 in 
Pollock and Caderni (1980), the footnote on p 274 in Barrow (19801, and Collins and 
Szafron (1979)). For this reason, most work to date has relied on linear perturbation 
methods (see for example Olson (1976) and references therein). 

The purpose of this paper is to survey and classify the known exact solutions of the 
Einstein field equations (subsequently abbreviated as EFES), which can possibly be 
interpreted as  spatially inhomogeneous cosmological models. We thus require first of 
all that the metric be spatially inhomogeneous in the sense that? 

We stress that this assumption excludes the well known spatially homogeneous solu- 
tions with perfect fluid source, both the non-tilted ones (Ellis and MacCallum 1969) and 
the tilted ones (King and Ellis 1973). 

As regards the source term in the EFES, we will restrict our attention to non-vacuum 
solutions in which the matter-energy content is idealised to be a perfect fluid. We are 
thereby excluding certain known spatially inhomogeneous vacuum solutions which are 
of interest as cosmological models, for example the Gowdy (1971) solutions. 

For the purposes of the survey, the only assumption that we will make about the 
nature of the solutions is that they are evolving in time. This leads us to assume that the 

AI:  the orbits of the maximal group of local isometries have dimension S 2 .  

t See Goode (1980) for a discussion of different ways of defining spatial inhomogeneity. 
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perfect fluid has non-zero (rate o f )  expansiont. This assumption excludes a number of 
spatially inhomogeneous solutions (for example the Winicour (1975) dust solutions and 
the Wahlquist (1968) perfect fluid solution, both of which admit one space-like and one 
time-like Killing vector field). This exclusion is reasonable on physical grounds, 
however, since the natural physical interpretation of perfect fluid solutions with zero 
expansion is as models of (rotating) distributions of perfect fluid in equilibrium. 

We now consider the vorticity of t‘he perfect fluid. The only known$ solution of the 
EFES with perfect fluid source which has non-zero expansion and non-zero vorticity is 
the solution of Demianski and Grishchuck (1972) (which is exact modulo solution of an 
ordinary differential equation). This solution, however, admits a group of local iso- 
metries with three-dimensional orbits and hence does not satisfy Al .  To reiterate: there 
are no known spatially inhomogeneous exact solutions in which the perfect fluid source has 
non-zero expansion and non-zero rotation. Thus, at the present time, a survey of known 
spatially inhomogeneous solutions of the EFES, whose source is a perfect fluid with 
non-zero expansion, is of necessity restricted to solutions in which the vorticity of the 
fluid is zero. Our second assumption is thus 

AZ: the source is a perfect fluid with zero vorticity and non-zero expansion. 
Any exact solution of the EFES will inevitably be ‘special’ in some respect, although 

not necessarily in the sense of admitting a local group of isometries. In  fact there are 
several known classes of solutions subject to A1 and AZ, which admit no Killing vector 
fields (see $ 5 ) .  These solutions are ‘special’, however, as regards the algebraic structure 
of the Weyl tensor. Indeed, it turns out that all known exact solutions of the EFES 

subject to A I  and A2 which admit less that two Killing vector fields are algebraically 
special,§ that is, of type 11, D, 111, N or 0 in the Petrov classification (see for example 
Kramer eta1 (1980, pp 58-65) for this terminology). The situation can thus be summed 
up by stating that all known solutions of the EFES subject to A1 and A2 satisfy at least one 
of the following additional restrictions: 

R1: the metric admits a group of local isometries with two-dimensional space-like 
orbits, 

R2: the Weyl tensor is algebraically special. 
This fact is used to simplify the classification given in this paper. 

The earliest spatially inhomogeneous solutions were the Tolman-Bondi spherically 
symmetric models (see Tolman 1934, Bondi 1947), and the Eardley et a1 (1972) 
plane-symmetric models, both of which have pressure-free matter as source. Both of 
these solutions admit a three-parameter group of local isometries with two-dimensional 
orbits, and hence are members of the class of LRS solutions (Ellis 1967, Stewart and Ellis 
1968), which satisfy conditions RI  and RZ. Indeed the LRS solutions admit two 
repeated principal null directions, and hence are of Petrov type D (Wainwright 1970). 

The LRS solutions have been studied extensively, but even in this special case, the 
field equations have not been solved in general except in the case when the source is 

We are certainly not asserting that any such solution will provide a reasonable model of the early 
inhomogeneous universe; at this stage we merely wish to impose a minimal set of restrictions. We should also 
mention that Ellis et a1 (1978) have recently studied the possibility of a static spherically symmetric universe, 
in which the rate of expansion is zero, but find that i t  is difficult to construct plausible cosmological models of 
this type. 
I To this and similar statements made subsequently, one should add the disclaimer ‘to the best of the author’s 
knowledge’, i.e. based on the author’s knowledge of the research literature, and a perusal of the survey 
volume on exact solutions by Kramer ef a1 (1980). 
6 This does not apply to vacuum solutions. See Kramer et a1 (1980, pp 178-9). 
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dust. Since the general properties of this class of solutions are well known, we will not 
consider them further here (see Kramer et a1 (1980) for a survey of explicit exact 
solutions). In the subclass of solutions defined by RI, there remain the solutions in 
which the local group of isometries is a two-parameter group. In all known solutions 
this group is Abelian. For this reason, this survey is henceforth restricted to solutions 
which admit an Abelian G2 (§  4) and solutions which are algebraically special (§  5). 

Spatially inhomogeneous solutions have invariably been derived either by assuming 
the existence of a local group of isometries or by assuming that the Weyl tensor is 
algebraically special. An interesting class of spatially inhomogeneous solutions was 
found by Szekeres (1975) using neither of these methods. Instead he simply imposed an 
ad hoc assumption on the metric, namely that it had a particular diagonal form, with the 
components depending on all four coordinates. It was subsequently discovered, 
somewhat surprisingly, that the Szekeres solutions were in fact of Petrov type D and 
hence satisfied restriction R2 (Wainwright 1977). It was also discovered that the 
Szekeres solutions were remarkably simple from a different point of view, namely the 
intrinsic geometry of the hypersurfaces orthogonal to the fluid flow. In particular these 
hypersurfaces are conformally flat (Berger et a1 1977, Szafron and Collins 1979). This, 
and other properties of the Szekeres solutions, led Collins and Szafron (1979) to 
propose a classification scheme for spatially inhomogeneous cosmologies. Further 
investigation of known spatially inhomogeneous cosmologies suggested that the so- 
called Cotton-York tensor, which describes the conformal geometry of the space-like 
hypersurfaces, should be incorporated into any classification scheme. This was done in 
a recent paper by the present author (Wainwright 1979); this paper will be subsequently 
referred to as I. It will be assumed that the reader is familiar with the terminology and 
classification scheme of this paper. In the present paper we describe the properties of 
the known non-rotating spatially inhomogeneous solutions in terms of this classification 
scheme. 

In $ 2  we give a classification of space-times which admit an Abelian G2,  and derive 
canonical forms for the tensors used in the classification scheme of paper I, namely the 
spatial Ricci tensor R:,, the spatial Cotton-York tensor C;, and the rate of shear 
tensor of the normal congruence In § 3 ,  canonical coordinates are constructed for 
space-times which admit an Abelian G2, and in 0 4 the known spatially inhomogeneous 
solutions of this type are surveyed. Section 5 deals with non-rotating spatially 
inhomogeneous solutions which are algebraically special. 

2. Space-times which admit an Abelian G2: classification 

In this section we consider space-times which admit an Abelian G2 of local isometries. 
We will consider additional restrictions which lead to greater simplification of the field 
equations, namely whether or not the group acts orthogonally transitively (Carter 1969) 
and whether or not the group admits a hypersurface-orthogonal (HO) Killing vector 
field (KVF) as a generator. The following theorem enables us to distinguish four 
mutually exclusive classes of space-times which admit an Abelian Gz. 

Theorem 2.1. Suppose that one of the Killing vector fields [ of an Abelian G2 with 
space-like orbits is hypersurface-orthogonal. Then the other Killing vector field 7 can 
be chosen to be orthogonal to 6. In addition 7 is hypersurface-orthogonal if and only if 
the group acts orthogonally transitively. 
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Proof. See the Appendix. 

The four mutually exclusive classes of space-times are labelled as follows: 
A(i): non-orthogonally transitive Gz, with no HO KVFS; 
A(ii): non-orthogonally transitive GZ, with one HO KVF; 
B(i): orthogonally transitive GZ, with no HO KVFS; 

B(ii): orthogonally transitive GZ, with two mutually orthogonal HO KVFS. 

Remarks. (i) We have not been able to exclude the possibility that there are solutions in 
class A(ii) having two HO KVFS which are not mutually orthogonal. 

(ii) It is conceivable that solutions of class A(i) may admit two mutually orthogonal 
KVFS; however, neither of them could be HO. 

We now select a unit time-like vector field U which is orthogonal to the group orbits 
and is invariant under the group. Any such vector field is hypersurface-orthogonal for 
the following reason. If local coordinates t, x, y ,  z are introduced such that the KVFS of 
the GZ are given by 

5 = slay, 77 = a/az, 

then the one-form corresponding to U will have the form 

U ,  dx'=cu d t + P  dx, 

where a, ,k? are independent of y and 2. This implies that u [ , , j U k l =  0. We will regard the 
chosen vector field U as a preferred vector field, which will subsequently be identified 
with the fluid velocity field. 

We now give the canonical forms for the rank-two tensors R:@, Czo and uao, which 
determine the intrinsic and extrinsic geometry of the space-like hypersurfaces ortho- 
gonal to U .  As in the Appendix, we can choose an orthonormal frame with eo = U and el 
orthogonal to the orbits, and which is invariant under the group. This does not 
completely fix e2 and e3, and in cases A(ii)  and B ( i i ) ,  we will choose e2 to be parallel to a 
H O K V F ~  (see the Appendix). By theorem 2.1, we can redefine the other KVF 77 to be 
parallel to e3. 

With this choice of frame, it follows from theorem 3.1 of paper I, and the Appendix, 
that R & and Cxo have the following forms. 

Classes A ( i )  and B ( i ) :  

RTI 0 0 
( R & ) =  0 Rfz Rf3 i 0 Rf3 Rf3 

Classes A ( i i )  and B ( i i ) :  

The form of the shear tensor for the four classes is as follows. 

Class A(i): (aaa) arbitrary (2.3) 
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(2.4) 

Class B(ii): ( ~ ~ 0 )  = d iadml ,  (+22,[+33). (2.6) 
These results follows from theorem 3.1 of paper I and the Appendix. 

Remark. The relationship of solutions which admit an Abelian G2 to the classification 
scheme of paper I has been given in that paper (see § 8): the intrinsic geometry is class I, 
and the extrinsic geometry is class A3 if the group does not act orthogonally transitively, 
and class B3 if it does. The use of the letters A and B to label the solutions in this section 
is thus consistent. Solutions of class A(i) (respectively B(i)) are not distinguished from 
solutions of type A(ii) (respectively B(ii)) within the classification scheme of paper I. All 
four classes, however, can be distinguished by considering the relationship between the 
eigenframes of R$ and asp, as follows. 

A(i): The Ricci and shear eigenframes are not aligned in any way. 
A(ii): RZB and reap have a common eigenvector, which is defined by the HO KVF. 

B(i): R$ and U,@ have a common eigenvector, which is orthogonal to the group 

B(ii): R& and amp have a common eigenframe. 
orbits and the fluid flow vector. 

We note that solutions of class B(ii) are particularly simple. The shear and spatial Ricci 
tensors have a common eigenframe, which is Fermi propagated (see equations (A2) and 
(A5)). In addition, if Cxp # 0 and R& has a uniquely defined eigenframe (up to 
reflections), then the eigenframes of these tensors are related by a rotation through 77/4 
radians in the two-space spannned by the KVFS. 

3. Solutions which admit an Abelian G2: local coordinates 

In this section, we describe the construction of canonical coordinates, based on two 
commuting KVFS 6 and 77, and on a HO time-like vector field U of unit length, which is 
orthogonal to 6 and 77. This vector field will be interpreted as the velocity field of the 
perfect fluid, but the construction of the coordinates does not depend on this, or on the 
field equations. Note that by the lemma: in the Appendix of paper I, U has zero Lie 
derivative with respect to the KVFS, ie. 

[ U ,  51 = 0 = [ U ,  771, (3.1) 
in terms of the Lie bracket. 

Theorem 3.1. Suppose that the space-time admits two space-like commuting KVFS 6 
and 7. Let U be a HO time-like vector field of unit length, which is orthogonal to 6 and 

t In the statement of this lemma, the requirement that the vector field q be non-null and of constant length 
was inadvertently omitted. 
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77. Then there exist local coordinates (t, x, y, 2) such that 

U = epk a l a ,  U ,  dx' = ek  dt, 

5 = a / a y ,  77 = a/az, 

ds 2 = - e2k( f ,  A )  dt2+gup(t ,  x) dx" dx', 

where cy, p = 1, 2, 3 and (x*) = (x, y, z ) .  

(3.2a) 

(3.2b) 

( 3 . 2 ~ )  

Proof. Since U is HO, we can choose t such that 

U' dx' = ek  dt. 

We then choose the spatial coordinates so that xu, iu' = 0. Then (3.2a) will hold. Since 
5 and 77 are orthogonal to U and satisfy (3.1), it follows that 

6 = 5" a/ax*, 77 = T u  alax", 

where 6" and 77" are independent of t. We can thus regard 6 and 77 as vector fields in a 
three-dimensional manifold. Since they commute, we can introduce spatial coordinates 
so that (3.2b) holds. The coordinate dependence of k and the gUp follows from (3.1) and 
the Killing equations. 

Remark. The remaining freedom in choice of the coordinates is 

t' = fO(t) ,  

y l  = Y +f'(x), 

XI = f l (x) ,  

2 '  = z +f3(X). 
( 3 . 3 )  

The x coordinate can be interpreted geometrically as follows. The vector fields U ,  6 and 
77 commute pairwise and hence are tangent to a family of hypersurfaces. Thus the unit 
vector field U which is orthogonal to U ,  5 and 77 is HO. From equations (3.2a, b )  and the 
orthogonality properties it fellows that 

(3.4) 

where e2h = l/g"". In other words, x defines the hypersurfaces spanned by U ,  6 and q. 
The orthonormal frame used in 8 2 and in the Appendix consists of e(o)  = U ,  e(1) = t' and 
two suitable linear combinations of 6 and q. In view of (3.4) it is convenient to complete 
the square in the line-element (3.2a), and write 

h ua dx" = e  dx, 

ds2 = -e2k d t2+e2h  dx2+rCf(dy + w1 dz + w 2  dx)'+ f-'(dz + w3 d ~ ) ~ ] ,  (3.5) 

where k, h, r, f and the w, are functions of t and x. The orthonormal frame which is used 
in $2 and in the Appendix is defined by 

w ( l )  - h 
w(O) = ek dt, - e  dx, 

(3.6) 
- - (rf)"'(dy + w1 dz + w2 dx), w ( ~ )  = (r/f)'"(dz + w3 dx). 

The coordinates constructed in theorem 3.1 are canonical coordinates for space- 
times of class A(i). The following theorem describes the specialisation that arises in 
connection with the classification of 8 2. 
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Theorem 3.2. For space-times of classes A(ii), B(i) and B(ii), local coordinates can be 
chosen so that U ,  5 and 77 are given by (3.2a, b ) ,  and the line element by (3.5), with 

(1) w1 = w2 = 0 or w1 = w 3  = 0, in class A(ii), (3.7a) 

(2) w2= w3=0, in class B(i), (3.7b) 

(3) w1= w2 = w3 = 0, in class B(ii). (3.7c) 

Proof. For classes B(i) and B(ii), the existence of these coordinates is well known 
(although usually the group orbits are time-like; see for example Carter (1973, p 165)). 
For class A(ii), an outline of the proof is given in the Appendix. 

Remarks. (1) The metric functions r, f and W I  are in fact scalars which can be expressed 
in terms of the KVFS, using (3 .26) ,  as follows?: 

(3.8) 

The scalar r provides a useful criterion for classifying space-times which admit an 
Abelian G2. The criterion is the nature of the hypersurfaces r = constant (assuming r is 
not identically constant). The three cases are distinguished by whether the scalar 

(3.9) 
ab C = r,ar,bg 

is positive (space-like hypersurface), negative (time-like hypersurface) or zero (null 
hypersurface). 

(2) For vacuum solutions one is not tied to a particular vector field U ,  and so one has 
the freedom to set h = k in equation (3.5). 

4. Exact solutions with an Abelian Gz 

In this section we survey the known exact solutions of the Einstein field equations which 
fall within the framework of 0 9  2 and 3, i.e. which admit an Abelian G2 whose orbits are 
orthogonal to the fluid velocity (assumed irrotational). We assume that condition A I  of 
the Introduction is satisfied. Before giving details, we note that surprisingly few 
solutions of this type, with a perfect fluid source, are known. (See for example Kramer 
er a1 (1980, ch 13, $ 5  5, 6, ch 15 and ch 20, $ 5 . ) )  The author is in fact aware of four 
sources of such solutions. 

(1)  Locally rotationally symmeiric (LRS) solutions in which a G 3  acts on 2D 
space-like surfaces of zero intrinsic curvature (class 11, with K = 0, in Stewart and Ellis 
(1968)). The general solution for the case of dust ( p  = 0) is known (see for example, 
Kramer et a1 1980, ch 13, § 5, Eardley et a1 1972)$. 

(2) The Szekeres (1975) dust solutions ( p  = 0) and their generalisation with pres- 
sure (Szafron and Wainwright 1977, Szafron 1977), These solutions in general admit 
no KVFS, but by specialising the metric in an obvious way, one can obtain two 
commuting KVFS. 

t 5 5 denotes g,,t'[ ' etc. 
$ Note that the well known Tolman-Bondi spatially inhomogeneous dust solutions (Tolman 1934, Bondi 
1947), which are LRS, do not arise, since they are spherically symmetric, and hence do not admit an Abelian 
( 3 2 .  
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(3) Solutions with p = p (i.e. stiff matter) can be derived from vacuum solutions 
using the algorithm of Wainwright et a1 (1979). This paper gives some references to 
earlier work. This algorithm has also been derived independently, and in a slightly 
different form, by Belinskii (1979). 

(4) The author (Wainwright and Goode 1980) has recently discovered a family of 
solutions, in which an equation of-state of the form p = yp,  0 < y < 1, is possible, 

4.1. Solutions of class B ( i i )  

All the solutions mentioned in the preceding survey, with the exception of some of the 
p = p solutions, are of the simplest type, namely class B(ii). The properties of the LRS 

solutions, as regards intrinsic and extrinsic geometry, were given in paper I. We now 
give some examples of Szekeres solutions of class B(ii). A simple subclass of the 
Szekeres dust solutions can be obtained from Szafron and Wainwright (1977), by 
setting q = 1 (see also Bonnor and Tomimura 1976). One obtains 

ds2 = -dt2 + t4 I3(dx2  + dy2 + Z 2  dz2),  (4.1) 

where 

Z = A + F i B t - ’ - & C t 2 / 3 ,  

with 

F = a x + b y - $ C ( x 2 + y 2 ) .  

Here A, B, C, a and b are arbitrary functions of z .  The coordinates are comoving, and 
the matter density is 

8 r p  = 4 ( A + F ) / 3 t 2 Z .  

Three possible specialisations which give rise to two commuting, HO, mutually ortho- 
gonal KVFS are given below, with the KVFS as indicated: 

a a  a a 
(1) a = b = C = O : -  - y - - x - ;  

ax’ay ’  ax a y  

a a  
a y ’  az 

( 2 )  b = C = 0, a ,  A, B =constant, a # 0: -; 

a a a  
ax a y ’ a z  

(3) a = b =O,A, B, C=constant,  C Z O :  y--x-  -. 

By making suitable identifications (and, in case (3), a coordinate transformation 
x = r cos 8, y = r sin e) ,  one can relate the line element (4.1) to the canonical line 
element ( 3 . 5 ) ,  subject to ( 3 . 7 ~ ) .  As pointed out by Szafron and Collins (1979), the 
Szekeres solutions are quite special as regards intrinsic and extrinsic geometry (see § 4 
of this paper for details). Solution (1) above is LRS and has been studied by Szafron and 
Wainwright (1977). 

Solutions of class B(ii), with p =,U, have been given by Wainwright et a1 (1979, 
examples l ( a )  and 2 ( a ) ) .  It has been shown by McIntosh (1978) that these solutions, 
which are not spatially homogeneous, are in fact spatially self-similar, i.e. they admit a 
three-parameter group of homothetic motions, generated by the two KVFS and a 
homothetic vector field. They are more general than the above specialisations of the 
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Szekeres solutions in that the slices are not conformally flat in general, and R zp and uup 
do not have a repeated eigenvalue. 

A new family of solutions in class B(ii) has recently been found (Wainwright and 
Goode 1980). These solutions are not spatially self-similar and include a subset with 
equation of state p = yp ,  0 < y < 1. Full details concerning the extrinsic and intrinsic 
geometry are given in Wainwright and Goode (1980). 

We note that in all examples except the preceding Szekeres solutions, cases (2) and 
(3), the scalar C, as defined by (3.9), is negative. In the Szekeres solutions, the 
expression for C is complicated and it probably changes sign over the space-time. The 
reason that C < 0 in most of the solutions is that this condition was imposed during the 
derivation. This choice was made because consideration of spatially homogeneous 
cosmologies with two commuting KVFS suggested that C < 0 was the appropriate choice 
for cosmological solutions (see also Liang 1976), and this was our main interest. 

4.2. Solutions of class B ( i )  

The only perfect fluid solutions in this class of which the author is aware are solutions 
with equation of state p = p, derived using the algorithm of wainwright eta1 (1979) and 
Belinskii (1979). In principle, many such solutions could be derived using this 
algorithm, since the required vacuum solutions could be generated using the Backlund 
transformation technique (see for example Harrison (1980)) or the inverse scattering 
problem technique of Belinskii and Zakharov (1978). Two classes of physically 
interesting solutions have been written down explicitly. These are the gravitational 
wave solutions of Wainwright and Marshman (1979), and the one-soliton cosmological 
wave solutions of Belinskii (1979). We refer to Wainwright (1979) for a detailed 
analysis of one of the gravitational wave solutions. In addition, some of the solutions 
given by Wainwright et a1 (1979, examples I ( b )  and 2(b)) are in class B(i). These 
particular solutions are in fact spatially self-similar (McIntosh 1978). Finally we note 
that the scalar C, as defined by (3.9), changes sign in the Belinskii (1979) solutions, while 
it is negative in the remaining solutions. 

4.3. Solutions of classes A ( i )  and A (ii) 

The author is not aware of any solutions in these classes. It should prove possible to 
derive solutions of class A(ii). 

Finally, for completeness, we relate some of the well known spatially inhomo- 
geneous uacuum solutions to the classification of § 2. For example, the cylindrical 
gravitational wave solutions of Einstein and Rosen (see, for example, Weber and 
Wheeler (1957)), the Kahn and Penrose (1971) and Szekeres (1972) colliding plane 
wave solutions, and the Gowdy (197 1) universes, which describe gravitational waves 
propagating in a closed universe, all belong to class B(ii). 

5. Algebraically special solutions 

The known, algebraically special, spatially inhomogeneous, perfect fluid solutions can 
be grouped into three classes, which are distinguished as follows. In an algebraically 
special space-time, there is a congruence of null curves whose tangent vector field 
defines, at each point, a repeated principal null direction of the Weyl tensor (see Kramer 
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et a1 (1980, pp 61, 90) for this terminology). This congruence is called a repeated 
principal null congruence (PNC). the defining properties of the three classes are: 

(1) the repeated PNC is geodesic and shear-free; 
(2) the repeated PNC is geodesic and has non-zero shear; 
(3) the repeated PNC is non-geodesic. 
In each class of examples to be presented below, the repeated PNC has zero twist but 

non-zero expansion. In addition, the solutions admit no KVFS in general. For 
completeness, we note that all LRS perfect fluid solutions satisfy (1) (Wainwright 1970). 

5.1. Geodesic and shear-free PNC 

A simple class of cosmological solutions of this type has the following line element 
(Wainwright 1974) : 

ds2=r(dx2+dy2)-2dv d r + U d v 2 ,  

where U = U(x, y, v )  satisfies the partial differential equation 

U,, + U,, + U, = 0. 

The fluid velocity, density and pressure are given by 

U ,  dx" = dr, 

and 

8 r p  = 8 r p  = U/(4r2). 

The repeated PNC is defined by the vector field 

1 =d/dr, 

and is geodesic, shear-free and twist-free (Wainwright 1974). Indeed, the derivation of 
these solutions was based on the assumption that such a repeated PNC existed. 

The coordinate system is unusual for a cosmological model, in that it consists of 
three space-like coordinate x, y, 2; (note that we require U > 0 on physical grounds), and 

. one null coordinate r. In addition, the hypersurfaces orthogonal to the fluid flow are 
defined by r = constant. These coordinates are certainly not comoving, and we have 
been unable to find comoving coordinates except for very simple choices of U. A more 
general class of solutions has been given by Wainwright (1974), but the subclass 
presented here is general enough to illustrate the properties of this type of solution. 

An orthonormal frame, with e(oj = U ,  is defined by the following one-forms: 

w(') = f-' dr, r dx, w(2)  - - r1/2 dy, w ( ~ )  = -f-' dr + f dc, 

where 

w( l )  = 1/2  

f =  JU. 
The dual basis of vector fields is given by 

d l a  l a  
e(', = f-+- -, ar f dv 

e(2) = r-1/2 a/ax, 

e(1, = 7 z3 
e(3j = r- ' j2  a/ay.  
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Relative to this frame, the non-zero intrinsic components are 

R ?I = -(rf )-'fxx, 

CT1 = -C2*2 = -(rf)-'BU, 

R T ~  = -(rf)-lfXy, 

R2*2 = -(rf)-lfVy, R f 3  = RTl +R:2, 

c T 2  = ( W A U >  

Cf3 = r-3/2(-Ay + BX) ,  Ct3 = r-3/2(-Ax -By) ,  

where 

A = V X X  -fyy)/f, B = 2fxy/f. 
The non-zero extrinsic components are 

2 ~i~ = -r-'/'fX/f, ~ i 2  = -r-l/'fY/f, U3 = -fu/f , 
U11 = U 2 2  = w, U33 = -2 w, U 1 3  = -r-'/'f,/f, 

where 

w = i(r-'f+ 2fu/f2). 

Inspection of the preceding formulae shows that these solutions are of the most 
general type as regards the classification scheme of paper I, i.e. class A, extrinsically and 
class I intrinsically, unless extra restrictions are imposed, e.g. dU/ay = 0. These and 
subsequent calculations in this section were performed using a library of programs 
(Wainwright 1978), written in the symbolic algebra language CAMAL (Fitch 1976). 

5.2. Geodesic PNC with non-zero shear 

We consider a subclass of the general, type-N, irrotational perfect fluid solutions 
(Oleson 1971). The line element is given (see Oleson (1971), subject to an obvious 
coordinate transformation and relabelling) by 

d s 2 = r 3  dx--H, du 

where f = f ( u ) ,  k = constant and H = H(u,  x ,  y )  are subject to 

+r(dy+rH, du)'-2rH dr dv+( r f2+r3k2)H2du2 ,  
i r  ) 2  

H,, + f2H = 0, Hyy + k 2 H  = 0. 

The fluid velocity, density and pressure are given by 

U, dx" = '3 2 1 / 2  dr, (rf2+r k ) 

87rp = (3/4r3)(f2-7r2k2), 8 7 r ( ~  -p )  = 12k2/r.  

The repeated PNC is defined by the vector field 

1 = alar, 

and is geodesic, but has non-zero shear (Oleson 1971). These solutions were derived by 
assuming that the Weyl tensor is of Petrov type N. 

The coordinate system is of the same nature as in the preceding subsection, i.e. the 
coordinates are not comoving. We note that when f ' (u)  = 0, this solution becomes a 
Friedman-Robertson-Walker solution, although this is not obvious by inspection. 
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An orthonormal frame which is adapted to the fluid flow is defined by 

w‘”) = (r”2/Z) dr ,  

w ( 2 )  = r 1 / 2  (dy+rHy du), 

w‘l) = r 3 ’ 2 [ d ~  - ( l / r ) H x  du], 

= rli2ZH du - (r1’2/Z) dr, 

where 

Z = cf2+ k2r2)’12. 

The dual basis of vector fields is given by 

e(o) = r-li2Z alar + e(31, 

e(1) = r-3’2 a/ax, 

e ( 3 )  = (r-li2/ZH)(a/av i r-’HX d/dx - rH, a / a y ) .  

e(2) = r -‘I2 slay, 

Relative to this frame, the non-zero extrinsic quantities are as follows: 

~i~ = -,y/r1/2Z, u11= u Z 2  = x/3r112Z, U 3 3  = -2u11, 

where 

x = ff’/Z’H. 

The non-zero components of R& and C$, are given by 

R* 2k2f2 R i2 = x k 2  - + --L 2 k 2 f 2  
rZ2 ’ z2 rZ2’  

Cf2+2k2r2)+- 

” - 2 ( f 2 + 3 k 2 r 2 ) + -  2 k 2 f 2  
rZ2 ’ 

11  - r 2 Z 2  

R 3 3  - r 2 Z 2  

c* Ct3 = o ,  

C* -”[-(-) 1 Hx -($) - 2 k 2 - -  

x Hx 
r H  

2 2 

H X  12 - 3 / 2  r Z ~ ~ H  

cT3 = -7/2 -. c” - x HY 
13 --y5/2 (g)? 

Inspection of the preceding formulae reveals that the solutions are extrinsically of 
class B1, and intrinsically of class I, unless extra conditions are imposed. Note that the 
frame in use is both a shear eigenframe and an eigenframe of R& 

5.3. Non-geodesic repeated PNC 

The only solutions of this type of which we are aware are the Szekeres solutions and 
their generalisations (see S 1 for references). These solutions in fact admit two repeated 
PNCS which are non-geodesic, and are hence of Petrov type D (Wainwright 1977) 
although, as pointed out in the Introduction, this property was not used to derive the 
solutions. Their intrinsic and extrinsic geometry has been studied in detail by Szafron 
and Collins (1979). The acceleration vector is zero, and the spatial gradient of the 
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expansion scalar is not a shear eigenvector. The extrinsic geometry is thus of class C1. 
As regards intrinsic geometry, these solutions are of class V, since the Cotton-York 
tensor is zero. In addition, R &  and amp have a common eigenframe and both tensors 
have a repeated eigenvalue. 

6. Conclusion 

In this paper we have surveyed and classified all known exact solutions of the EFES 
whose source is a perfect fluid with non-zero expansion, and such that the maximal group 
of local isometries has dimension s 2 .  As pointed out in the Introduction, in all these 
solutions the perfect fluid has zero vorticity. We have not given complete details on the 
known LRS solutions, however, since this is available elsewhere (see Kramer et a1 (1980) 
for explicit solutions, and Wainwright (1979) for the properties of their extrinsic and 
intrinsic geometry). For reasons given in the Introduction, it was sufficient to restrict 
our considerations to solutions which admit an Abelian G2 (§§ 2 , 3 , 4 )  and to solutions 
whose Weyl tensor is algebraically special (§ 5 ) .  

In order to give a clear picture of the current situation, it should be stressed that the 
known exact solutions which satisfy Al and A2 are quite specialised, despite the fact that 
some of the solutions admit no KVFS. We pointed out in the Introduction that all the 
known solutions satisfy restrictions R I  or R2, or both. We list here two other 
restrictions which are often satisfied: 

R3: the slices orthogonal to the fluid flow are conformally flat, i.e. C& = 0; 
R4: the equation of state (if it exists) is extreme, i.e. p = 0 or p = p,  

We stress that none of the conditions R1-R4 is desirable, and the extent to which they 
are satisfied gives a measure of the specialised nature of solutions. The table below 
summarises whether or not conditions Rl-Rd are satisfied by the spatially inhomo- 
geneous solutions which have been discussed in this paper. 

Class of solutions RI R2 R3 R4 

1. Spherically or plane symmetric dust YES YES YES YES 
2. Szekeres (1975) NO YES YES YES 
3. Type-N solutions NO YES NO YES 
4. Wainwright (1974) NO YES N O  YES 
5 .  p = p  solutions YES NO NO YES 
6 .  Wainwright and Goode (1980) YES NO YES NO 

Another problem that is encountered with these solutions is that often the pressure 
and density of the fluid become unbounded on each slice, unless the slices and hence the 
space-time are artificially restricted. This problem can be avoided in classes 1 , 2 , 5  and 
6. 

A positive feature to look for in spatially inhomogeneous solutions is the presence of 
essential arbitrary functions, since this increases the generality of the solutions. Classes 
1 and 2 above contain one or more essential arbitrary functions of one space-like 
coordinate, while class 3 and certain solutions in class 5 (see Wainwright and Marshman 
1979) contain an essential arbitrary function which is constant on null hypersurfaces. 

One can also study whether a spatially inhomogeneous solution approximates a 
Friedman-Robertson-Walker solution at late times. To date, in all solutions which 
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have been found to have this property, the fluid has zero acceleration (which implies 
p = 0, if one demands an equation of state p = p ( p ) ,  and spatial inhomogeneity). We 
refer to Bonnor (1974) for class 1 solutions, in the preceding table, and to Bonnor and 
Tomimura (1976) and Szafron and Wainwright (1977) for class 3 solutionst. 

The behaviour of spatially inhomogeneous solutions near the initial singularity is 
also of interest. It has been conjectured by Penrose (see for example Hawking and 
Israel (1979, pp 630-l)), and Barrow and Matzner (1977) that near the initial 
singularity the universe should in some sense approach homogeneity and isotropy. 
These spatially inhomogeneous solutions are currently being studied by the author from 
this point of view. 

In this paper, we have studied the known non-rotating spatially inhomogeneous 
solutions from the point of view of the intrinsic and extrinsic geometry of the 
hypersurfaces orthogonal to the fluid flow. While this approach provides a common 
framework for stydying such solutions, it has as yet not led to the discovery of any new 
models. The usefulness of this approach as a technique for finding solutions, first 
suggested by Collins (1979), would be established, for example, if it were to lead to the 
discovery of solutions which satisfied neither restriction RI or R2. 

We conclude by mentioning some other possibilities for deriving new spatially 
inhomogeneous solutions. As regards solutions with a two-parameter group of local 
isometries, we could consider a group which does not act orthogonally transitively, or a 
group which is non-Abelian. A more profitable approach would probably be to assume 
the existence of one hypersurface-orthogonal KVF, which is orthogonal to the fluid flow, 
together with some restriction on the intrinsic or extrinsic geometry of the slices. 
Investigations in these directions are continuing. 
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Appendix 

Proof of theorem 2.1. As described in Q 2, following the statement of theorem 2.1, we 
select a unit time-like HO vector field U, which is orthogonal to the group orbits. As in 
the proof of theorem 3.1 in paper I, we can choose an orthonormal frame {ea},  with e2, 
e3 tangent to the group orbits, and eo = U,  SO that 

(A l l  [e,, 51 = 0 = [e,, 771, 
where 5, 77 are two Killing vector fields, which generate the group. Since the group is 
Abelian, we have the following restrictions on the connection coefficients: 

U2 = U3 = 0, 

m I 2  + ln3 = m I 3  - ln2 = 0, 

n l l = n 1 2 = n 1 3 = 0 ,  

Liz = zi3 = 0. 

i. The discussions given to date have been based on particular local coordinates, and in the author’s opinion, 
the concepts involved have not been adequately defined. 
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There is still the following freedom in choice of the frame: 

Z2=coscC,e2+sin$e3, Z3  = -sin cl, e2  +cos cl, e 3 ,  (A31 

where cl, is constant on the group orbits, i.e. e 2 ( 4 )  = 0, e3(cC,) = 0. We can write 

5 = Ae2 + Be3, T = Ce2 + De3, 

and since the group is Abelian, it follows that the functions A ,  B, C, D are constant on 
the group arbits. Hence we can use (A3) to set B = 0, i.e. 

5 =Ae2, = Ce2+De3. (A41 

a 2 3 - C l ,  =o ,  n33 = 0 (A51 
We now use the fact that 5 is hypersurface-orthogonal, i.e. that eo, e l  and e 3  are 

tangent to hypersurfaces. This means that the commutators of eo,  e l  and e 3  are linear 
combinations of eo ,  e l  and e 3 .  The commutators thus imply that 

It follows from (Al) and the commutators that 

uI2 - C13 = 0, a23+f&=O,  n22 = 0. 

In conjugation with (A2) and (A5) this yields 

U2 = U3 = 0, 

a 1 2  = a 2 3  = 0, 

Cll = C13 = 0, n l l  = n12 = n13 = n22 = n33 = 0, 
(A61 

U 2  = U 3  = 0, U13 - Cl2 = 0. 

We now conclude, using theorem 3.1 and equations (A4) and (A5) of paper I, that 

R2p is diagonal 

and 

Cz3 is the only non-zero component of C". 

By making use of (Al) ,  (A4), (A6) and the commutators, we find that 

eo(A/C) = 0, e , ( A / C )  = 0, 
which implies that 

C = kA, 

Hence the vector field 

k = constant. 

+ = T - k 5 = D e 3  

is a Killing vector field, which is orthogonal to 5. Inspection of the commutators shows 
that e 3 ,  and hence +, is hypersurface-orthogonal iff ( ~ 1 3  + C12 = 0. But because of the 
restrictions on the connection coefficients, this is precisely the condition for the group to 
act orthogonally transitively. 

Proof of Theorem 3.2. We briefly indicate how to construct canonical coordinates for 
class A(ii) space-times. In this case the frame vectors e(o),  e ( l )  and e(2)  are hypersurface- 
orthogonal (see the preceding proof and the Appendix in paper I). Thus there exist 
coordinates t ,  x, y, z such that the dual one-forms are given by 

W ( ~ ' = A  dt, w ( l )  = B  & ~ ( ~ 1  = T dt + X  dx + Y d y  + Z  dz, w ( 2 )  = C dy,  
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where the coefficients are arbitary functions at this stage. The exterior derivatives of 
these one-forms are given by 

(A71 dw(")=  -+cgcW(b) , . ,  W ( r )  

where the CgC are the structure coefficients of the orthonormal frame, i.e. 

(see for example Ryan and Shepley (1.975, p 27)). The c : b  can be read off from the 
usual expressions for the commutators in the Ellis-MacCallum tetrad formalism (see 
for example the Appendix in paper I), and are restricted by equations (A6). 

Firstly it follows that A, B and C are functions of t, x only. (As regards C, the 
y-dependence factors out and is absorbed into dy by redefining y).  Secondly, we can 
use the freedom in the z coordinate to set Y = 0. The commutators then imply that 2, X 
and T are independent of y, and so the z coordinate can be further specialised to set 
T = 0. Further use of the comutators and the fact that the structure coefficients are 
independent of y and z enables one to use the remaining z-freedom to eliminate the z 
dependence in X and 2. The frame thus has the form (3.6), with w 1  = w2 = 0. 
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